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We show how a large family of master equations, describing quantum Brownian motion of a harmonic
oscillator with translationally invariant damping, can be derived within a phenomenological approach, based
on the assumption that an environment can be simulated by two classical stochastic forces. This family is
determined by three time-dependent correlation functions �besides the frequency and damping coefficients�,
and it includes as special cases the known master equations, whose dissipative part is bilinear with respect to
the operators of coordinate and momentum.

DOI: 10.1103/PhysRevE.75.011132 PACS number�s�: 05.40�a, 03.65.Yz, 02.50.Ga

I. INTRODUCTION

The phenomena of irreversibility and damping in quan-
tum systems have been the subjects of numerous studies
from the very first years of quantum mechanics �QM� �1–4�.
They are attributed to the action of some environment that
drains information from quantum system S thus increasing
the entropy during its evolution. The environment is usually
referred to as reservoir R whose variables are expressed as q
numbers �operators acting in the Hilbert space�, and it is
assumed to have an infinity of degrees of freedom. In the
most general case, one has to treat the whole quantum sys-
tem S+R, taking into account all details of each subsystem
and the interaction between them. It is known, however, that
under certain conditions the influence of environment can be
described approximately by means of a few parameters
which enter some dynamical equations containing only the
variables related to the system S. In the Schrödinger picture
such equations for the statistical operator �̂�t� or its different
representations �density matrix, Wigner function, etc.�,
known under the name quantum master equations �QMEs�,
were studied in numerous papers, e.g., �5–25�. An alternative
description in the Heisenberg picture is achieved within the
frameworks of quantum Langevin equations or Langevin-
Heisenberg equations �LHE’s� �16,26–39�. These two ap-
proaches were discussed in detail in many books and reviews
�40–52�.

The shortest and simplest formal way of introducing re-
laxation in quantum mechanics is to postulate some general
structure of the master or Langevin-Heisenberg equations,
which guarantees fulfillment of the fundamental require-
ments of QM �such as the properties of Hermiticity and posi-
tivity of the statistical operator, as well as its normalization;
or preservation of canonical commutation relations between
the time-dependent operators� for any instant of time. For
example, a general structure of dynamical mappings of den-
sity operators preserving positive semidefiniteness was es-

tablished in �53,54�, and equivalent differential equations
were considered in �55–58�. For a more restricted problem of
quantum Brownian motion this approach was used, e.g., in
Refs. �59–64�, where some sets of free parameters were cho-
sen in such a way that mean values of coordinates and mo-
menta obeyed given classical equations of motion.

However, it seems desirable to have some schemes per-
mitting us to derive master equations from some general
principles. The most natural way to do this is to start from
some explicit Hamiltonian for the total system S+R. Then
the dynamical equations for the subsystem S arise as a result
of taking the trace over the reservoir variables. In this ap-
proach both the subsystem and reservoir are considered as
quantum objects from the very beginning. A frequently used
simple model of the reservoir consists of an infinite number
of harmonic oscillators �HO’s� with a frequency distribution
chosen according to some hypothesis. Note, however, that
although the use of a reservoir is usually viewed as a “mi-
croscopic” approach for the derivation of LHE or QME, in
reality, unless one knows precisely the nature of the environ-
ment and its interaction with S �described by a Hamiltonian
with parameters dependent on fundamental constants; see,
e.g., �65� for this exceptional case�, strictly speaking, it
should be considered as phenomenological. This occurs be-
cause several assumptions must be made concerning the very
nature of the reservoir modes, on the parameters of the res-
ervoir Hamiltonian and on the R−S interaction term.

Taking this point of view, it seems interesting to study
what kinds of master equations can be obtained, if one fol-
lows the phenomenological path from the very beginning to
the very end. This is the aim of our paper. As a general
principle we assume the Lagrange-Hamiltonian formalism,
which impelled the development of physics in general and in
particular QM and field theories. It is complemented by the
assumption that S interacts with time-dependent �TD� clas-
sical fluctuating forces �Fi�t��, which simulate the action of
the environment without any further preoccupation about the
nature of their microscopic origin. We show that combining
some phenomenological Lagrangian, which takes into ac-
count the effect of dissipation, with a suitably chosen set of
classical stochastic forces and following standard rules of the
“canonical quantization” procedure, one can obtain in a quite
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straightforward and simple manner a large class of master
equations, which embraces many equations, introduced ear-
lier within the frameworks of different schemes. This ap-
proach was used earlier in Refs. �66–70�. However, in those
papers the authors considered only one classical stochastic
force. As a result, the equations obtained had some restric-
tions on their domain of validity. We show that introducing
two stochastic forces one can obtain more general equations.

The paper is organized as follows. In Sec. II we give a
brief review of known master equations describing quantum
damped oscillators. Interesting results are contained in Sec.
III, where we derive the master equation with the use of two
effective classical fluctuating forces. We show that in the
classical case, it is always possible to use a single force,
without changing the physics. However, in the quantum case
two forces are necessary to obtain equations compatible with
the principles of QM. Section IV contains a summary and
conclusions. In the Appendix we expose some details of cal-
culations.

II. CONVENTIONAL MASTER EQUATIONS

The Hamiltonian H0 considered in this paper corresponds
to a particle of mass m and angular frequency �0 subjected to
a one-dimensional harmonic force,

Ĥ0 = ��0�â†â + 1/2� = p̂2/�2m� + m�0
2x̂2/2, �1�

where the non-Hermitian lowering operator â can be written
in terms of Hermitian operators, the particle position x̂ and
its momentum p̂, as

â = �2��0m�−1/2�m�0x̂ + ip̂� .

The general form of the master equation is

d�̂/dt + �i/���H, �̂� = L�̂ , �2�

where the dissipative nonunitary superoperator L accounts
for the influence of the environment and the operator H can
be different from H0. One of the most frequently used master
equations for the damped harmonic oscillator has an origin in
the problems of quantum optics. It corresponds to H=H0 and

L�̂ = ��n̄ + 1��2â�̂â† − â†â�̂ − �̂â†â�

+ �n̄�2â†�̂â − ââ†�̂ − �̂ââ†� , �3�

where n̄� n̄��0 ,T�= �e�−1�−1 is the reservoir mean number
of quanta at temperature T ��=��0 /kBT�, kB is Boltzmann
constant and � is the decay rate or damping constant, which
contains the strength parameter of the interaction between R
and S. The operator �3� seems to be derived for the first time
under the assumption of weak coupling between a quantum
system S and a quantum thermal reservoir and by adopting
the Born-Markov approximation in �15–18�. Its representa-
tion in the Fock basis was derived in the general form in
�8–10,19�, although the special case of the equation for di-
agonal matrix elements can be traced to papers by Landau,
Bloch, and Pauli �1–3� �see also �6��.

An immediate generalization of operator �3� is

L�̂ = �
j

�2�̂ j�̂�̂ j
† − �̂ j

†�̂ j�̂ − �̂�̂ j
†�̂ j� , �4�

where �̂ j are arbitrary linear operators �their number also
may be arbitrary�. Sometimes the right-hand side of Eq. �4�
is called the “Lindblad form,” after the study �58�, although
this general structure, preserving the Hermiticity, normaliza-
tion, and positivity of �̂, was discovered by several authors
earlier �55–57�.

The relaxation operator in terms of operators x̂ and p̂ is
usually associated with the problem of quantum Brownian
motion. The most general master equation, preserving the
normalization and Hermiticity of the statistical operator �̂
and containing only bilinear forms of operators x̂ and p̂,
corresponds to the choice

H = H0 +
�

2
�x̂, p̂� , �5�

L�̂ =
i�

2�
�p̂,�x̂, �̂�� −

i�

2�
�x̂,�p̂, �̂�� −

Dp

�2 †x̂,�x̂, �̂�‡

−
Dx

�2 �p̂,�p̂, �̂�� +
Dz

�2 �x̂,�p̂, �̂�� +
Dz

�2 †p̂,�x̂, �̂�‡ , �6�

where �, �, Dx, Dp, and Dz can be, in principle, arbitrary
functions of time. This form was considered, e.g., in Refs.
�30,46,61� �in the case of time-independent coefficients� and
�37� �with arbitrary time-dependent coefficients�. Some dif-
ferences in explicit expressions can be removed with the aid
of identities �x̂ , p̂�= i� and

�x̂,�p̂, �̂�� + ��̂,�x̂, p̂�� + �p̂,��̂, x̂�� = 0.

The meaning of parameters � and � becomes clear from the
equations for mean values of the coordinate and momentum:

d	x̂
/dt = 	p̂
/m + �� − ��	x̂
 , �7�

d	p̂
/dt = − m�0
2	x̂
 − �� + ��	p̂
 . �8�

The choice �=� eliminates the friction term from the equa-
tion for d	x̂
 /dt. This special case was studied by Dekker in
�68�. Generalizations of Eqs. �5� and �6� to multidimensional
systems �in particular, to the case of a charged particle in a
magnetic field� were given in �59,60�. The superoperator �3�
is a particular case of Eq. �6� for

Dp =
�

2
m��0�n̄ +

1

2
� = �m�0�2Dx, Dz = � = 0.

The operator master equation �6�, being written in terms
of the Wigner function,

W�x,p,t� =
1

	�

 dye−2ipy/�	x − y��̂�t��x + y
 , �9�

assumes a simple form of the Fokker-Planck equation,
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�W

�t
=

�

�p
��m�0

2x + �� + ��p�W� −
�

�x
��p/m + �� − ��x�W�

+ Dp
�2W

�p2 + Dx
�2W

�x2 + 2Dz
�2W

�p�x
. �10�

Thus we see that the terms proportional to Dx, Dp, and Dz in
Eq. �6� describe the diffusion in the phase space.

Introducing the phase space vector variable q= �x , p�, one
can write Eq. �10� in a compact form

�W�q,t�
�t

= −
�

�qi
��Aq�iW� + Dij

�2W

�qi�qj
�11�

�sum over repeated indices is understood�, where

A = � � − � m−1

− m�0
2 − �� + ��

� �12�

is a “drift” matrix, which governs the evolution of the first
order statistical moments �mean values�,

d	q
/dt = A	q
 . �13�

Introducing the covariances 
 jk= 1
2 	q̂jq̂k+ q̂kq̂j
− 	q̂j
	q̂k
, one

can verify that both Eqs. �10� and �11� result in the following
equation for the symmetrical covariance matrix M��
 jk�:

dM/dt = AM + MÃ + 2D , �14�

where Ã is the transposed matrix of A and D��Dij� is the
symmetrical diffusion matrix �D12=D21=Dz�.

Taking the operators �̂ j in Eq. �4� as linear combinations
of operators x̂ and p̂,

�̂ j = � jx̂ + � jp̂ , �15�

one can verify that the operator �6� can be rewritten in the
form �4�, provided the following conditions can be satisfied
�71�:

�
j

�� j�2 = Dx/�
2, �

j

�� j�2 = Dp/�2, �16�

�
j

� j
*� j = i�/�2�� − Dz/�

2. �17�

In view of the Schwartz inequality,

�
j

�� j�2�
j

�� j�2 � ��
j

� j
*� j�2,

the condition of compatibility of Eqs. �16� and �17� is the
inequality

DpDx − Dz
2 � ���/2�2 � ��Tr�A�/4�2. �18�

The condition �18�, which was derived and discussed from
different points of view in Refs. �52,59–63,71–73�, guaran-
tees that the positivity of statistical operator is preserved for
all times and for any physically admissible initial state. This
is the necessary and sufficient condition �together with con-
ditions Dx�0 and Dp�0� of reducibility of the operator �6�
to the Lindblad form �4� �59,60�. Note that parameter � does

not enter the constraint �18�, because it is related to the cor-
rection to the Hamiltonian �5� and not to the nonunitary part
of the total Liouville superoperator. So its presence in the
“friction forces” in Eqs. �7� and �8� is not relevant to the
existence or nonexistence of the Lindblad representation of
the master equation.

Some frequently considered master equations with time-
independent coefficients, such as, e.g., the Agarwal equation
�74� �with �=�, Dp=2m��0n̄, and Dx=Dz=0� or its special
case, known as the Caldeira-Leggett equation �75� �with �
=�, Dp=2m�kBT, and Dx=Dz=0�, do not satisfy the condi-
tion �18�. Consequently, these equations can result in viola-
tions of the positivity of the statistical operator �which is
equivalent to the violation of the uncertainty relations
�47,60,70,71�� at the intermediate stages of evolution, if one
tries to use them outside the domain of their validity �which
corresponds to the limit of high temperatures, kBT
��0�.

On the other hand, it was shown in �76–80� that the
Wigner function of a subsystem S interacting with a reser-
voir R satisfies Eq. �11� at any time, if �I� the total Hamil-
tonian of the whole system S+R is an arbitrary quadratic
form with respect to coordinates and momenta �in particular,
the interaction Hamiltonian can be an arbitrary bilinear form
with respect to the coordinates of S and R�, and if �II� the
initial statistical operator of the total system is factorized,
�̂tot= �̂S�̂R, where �̂R is an arbitrary Gaussian state �i.e., not
necessarily thermal, it can be squeezed, for example�. How-
ever, in such a case, �a� the matrices A and D are explicitly
time-dependent �which is interpreted sometimes as a mani-
festation of non-Markovian evolution �37,81,82��, and �b� the
constraint �18� �or its multidimensional generalizations
�59,60�� can be violated. This does not mean that the state
�̂S�t� can become unphysical—no, simply in this case the
system S does not pass over all possible mixed states in the
process of evolution, but it moves only along some specific
trajectories in the Hilbert space; see in this connection also
�36,76,83�.

Time-independent diffusion and drift matrices appear only
asymptotically, as t→� �physically, after some characteristic
time determined by the properties of R�. Moreover, the sets
of diffusion coefficients satisfying �18� can be obtained only
for specific forms of the R−S interaction Hamiltonian. For
example, in the case of a thermal reservoir, the relaxation
superoperator �2� can be derived if the interaction only has
the so called rotating wave approximation form, which re-
sults in the drift matrix �12� with �=0 �79�. The superopera-
tor �6�, with arbitrary time independent diffusion coeffi-
cients, can be derived with the use of squeezed �or rigged�
reservoirs �33,84�. Our main goal in this paper is to find the
sets of drift and diffusion coefficients �possibly, time-
dependent� that can be obtained from the scheme of quanti-
zation of classical equations with two stochastic forces.

III. FROM CLASSICAL STOCHASTIC FORCES
TO QUANTUM MASTER EQUATIONS

A. Classical treatment

A typical equation of motion of a particle of mass m sub-
jected to a linear friction force in one dimension is
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ẍ + �̇tẋ +
1

m

�V�x,t�
�x

= 0, �19�

where V�x , t� is a potential and �t a TD dissipative function.
Although Eq. �19� describes a nonconservative system, it is
known for a long time �see, e.g., �85,86� and references
therein� that it can be derived from some Lagrangian. The
most simple one is known under the name Bateman-
Caldirola-Kanai Lagrangian �87,88�,

L�x, ẋ,t� = �1

2
mẋ2 − V�x,t��e�t. �20�

We consider a simple generalization of Eq. �20�,

L�x, ẋ,t� = �1

2
mẋ2 − V�x,t� + xFt + ẋGt�e�t, �21�

where Ft and Gt are arbitrary generalized TD forces associ-
ated to the position x and to the velocity ẋ. The canonical
momentum is

P � �L/�ẋ = e�t�mẋ + Gt� �22�

and we define the physical momentum as

p � mẋ + Gt = Pe−�t. �23�

The Hamiltonian associated to the Lagrangian �21� is

H�t� = Pẋ − L =
P2

2m
e−�t + �V�x,t� − xFt�e�t

− PGt/m + Gt
2 exp��t�/2m . �24�

The classical equations of motion for canonical coordinates
�Hamilton equations� are

ẋ = �H�t�/�P = �Pe−�t − Gt�/m ,

Ṗ = − �H�t�/�x = �− �V�x,t�/�x + Ft�e�t,

whereas for the physical coordinates one obtains

ẋ = p/m − Gt/m, ṗ = − �V�x,t�/�x + Ft − p�̇t,

or as a single second order equation �Newton equation�

ẍ + �̇tẋ +
1

m

�V�x,t�
�x

=
1

m
�Ft − �̇tGt − Ġt� , �25�

where the right-hand side contains TD terms only.
We see that in classical mechanics, where the coordinate x

is the only independent variable �since p or P are functions
of ẋ�, the presence of two terms, −xFte

�t and −PGt /m, in
Hamiltonian �24� is redundant, because the dynamics de-

pends only on the combination F�t�=Ft− �̇tGt− Ġt. A usual
choice is Gt�0 and Ft=F�t�. But one can obtain the same
dynamics, choosing Ft�0 and finding the function Gt from

the equation −��̇tGt+ Ġt�=F�t�, whose solution is

Gt � Ke−�t − e−�t
t

e��F���d� ,

where K is an arbitrary constant.

However, both forces, Ft and Gt, are important in the
quantum case, because of the noncommutation property of
position and momentum. These forces give different contri-
butions to the dynamical evolution of the system state, as we
show in the following subsection.

B. Quantum treatment

Having the Hamiltonian function �24�, one can try to
“quantize” the classical dissipative system, transforming Eq.
�24� to an operator by means of the usual rules and writing
the time-dependent Schrödinger equation with this “quan-
tum” Hamilton operator. This idea was formulated for the
first time by Caldirola and Kanai �CK� in the 1940s �88�, and
since that time it was developed or criticized by many au-
thors �see, e.g., Refs. �46,89��. It is known by now that such
a simplified approach suffers from many drawbacks. For in-
stance, the CK Hamiltonian is explicitly time-dependent, so
it is closer to the system with time-dependent mass than to
the genuine dissipative system. Moreover, the problem of
finding the Hamiltonian for the given equations of motion
has no unique solution, and practically all such Hamiltonians
have some pathology �85,86�. But the main physical defect
of the CK scheme is that it implies that the quantum state of
the system remains pure during the evolution, because regu-
lar classical fields interacting with a quantum system S do
not change its informational content as time goes on, even if
energy is not conserved; an initial pure state �S�0� will
evolve as a pure state �S�t�. On the other hand, it is known
that dissipation is connected with a loss of quantum purity.
Thus one has to describe the system in terms of the density
matrix or its equivalent forms, such as the Wigner function,
for example. But how to find equations of motion for the
density matrix?

An answer was given in Refs. �66–70�: one should start
not from the Schrödinger equation for a wave function, but
from the von Neumann–Liouville equation for the statistical
operator, considering Ft and Gt as stochastic forces and per-
forming some averaging over these forces. This averaging
results in an information drain from the quantum system S.
So irreversibility is verified and the entropy of the system
changes due to the random character of the classical fields.
However, by using a single stochastic force one obtains
equations which not always preserve the property of positiv-
ity of the statistical operator. Our goal here is to show that
correct equations, satisfying all principles of QM, can be
derived in a very simple way, if one introduces two classical
stochastic forces, instead of a single one, besides one regular
dissipative function.

The equation for the time evolution of the density matrix
following from Hamiltonian �24� reads

d�̂t

dt
=

1

i�
�Ĥef�t� + Ŵ�x̂, P̂,t�, �̂t� , �26�

where

Ĥef�t� = e−�tP̂2/�2m� + V�x̂,t�e�t, �27�
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Ŵ�x̂, P̂,t� = − e�tx̂Ft − P̂Gt/m . �28�

Ŵ�x̂ , P̂ , t� is a stochastic operator if Ft and Gt are assumed as
stochastic forces. The TD term Gt

2 exp��t� /2m was thrown

out from Ĥef�t� since it does not contribute to the equations
of motion.

Using the unitary evolution operator Ût corresponding to
the effective free Hamiltonian �27�,

i�dÛt/dt = Ĥef�t�Ût,

we make a unitary transformation

�̂t = Ût�̃tÛt
†, �29�

which removes the term Ĥef�t� from Eq. �26�:

i�d�̃t/dt = �Ŵ�x̃t, P̃t,t�, �̃t� � �W̃�t�, �̃t� , �30�

and where

x̃t = Ut
†x̂Ut, P̃t = Ut

†P̂Ut. �31�

A formal solution to Eq. �30� is

�̃t = �̂0 +
1

i�



0

t

dt��W̃�t��, �̃t�� . �32�

Iterating Eq. �32� and deriving with respect to time we get
the equation

d�̃t

dt
=

1

i�
�W̃�t�, �̂0� +

1

�i��2

0

t

dt�†W̃�t�,�W̃�t��, �̃t��‡

�33�

which is still exact. Its physical content is the same as Eq.
�30�. Using the right-hand side of Eq. �32� for �̃t� and insert-
ing it in Eq. �33� recursively, we obtain an infinite series,

d�̃t

dt
=

1

i�
�W̃�t�, �̂0� + �

k=1

�
1

�i��k+1

0

t

dt1 ¯ 

0

tk−1

dtk

� �W̃�t�,†W̃�t1�, ¯ �W̃�tk�, �̂0�‡� . �34�

The next step is to perform averaging over stochastic forces
in Eq. �34�. We assume that classical stochastic functions Ft
and Gt are Gaussian with zero average values, Ft=Gt=0, and
that they are delta-correlated with a TD function �not a sta-
tionary process�:

Ft1
Ft2

= 2At1
��t1 − t2� , �35�

Gt1
Gt2

= 2m2Bt1
��t1 − t2� , �36�

Ft1
Gt2

= 2mCt1
��t1 − t2� . �37�

Moreover, we take into account the important properties of
Gaussian stochastic processes, namely, Jt1

Jt2
¯Jt2n+1

=0 for

an odd number of terms �Jt stands for Ft or Gt�, whereas for
an even number

Jt1
Jt2

¯ Jt2n
= �

all pairs

Jti
Jtj

· Jtk
Jtl

, �38�

where the average is over ensembles. Since stochastic opera-

tors W̃�tk� are linear combinations of x̃tk
and P̃tk

, only the

terms with even numbers of operators W̃�tk� survive after the
averaging in Eq. �34�, so that we arrive at the series contain-
ing only even powers of �:

d�̂t

dt
= �

k=1

�
1

�i��2k �̂2k�t� . �39�

The first term of this expansion is a sum of four integrals
containing double commutators,

�̂2�t� = 

0

t

dt�e�t+�t�FtFt�†x̃t,�x̃t�, �̂0�‡

+ m−1e�t

0

t

dt�FtGt�†x̃t,�P̃t�, �̂0�‡

+ m−1

0

t

dt�e�t�GtFt�†P̃t,�x̃t�, �̂0�‡

+ m−2

0

t

dt�GtGt�†P̃t,�P̃t�, �̂0�‡ ,

which can be easily calculated due to the presence of delta
functions in Eqs. �35�–�37�, resulting in the following ex-
pression:

�̂2�t� = Ate
2�t�x̃t,�x̃t, �̂0�� + Bt†P̃t,�P̃t, �̂0�‡

+ Cte
�t�†x̃t,�P̃t, �̂0�‡ + †P̃t,�x̃t, �̂0�‡� . �40�

Continuing these steps, we see that the structure of the term
�̂2�t� is repeated each time, resulting finally in replacing the
initial operator �̂0 by the time dependent operator �̂t. Thus
we obtain the following closed equation governing the time
evolution of the statistical operator averaged over stochastic
forces �see the Appendix for details of the derivation�:

d�̂t

dt
=

1

i�
�Ĥef�t�, �̂t� −

1

�2 �Ate
2�t
†x̂,�x̂, �̂t�‡

+ Bt†P̂,�P̂, �̂t�‡ + 2Cte
�t
†x̂,�P̂, �̂t�‡� . �41�

We would like to emphasize that no truncations of higher
order terms were done in deriving Eq. �41�, so this equation
holds for any TD force strengths �coefficients At ,Bt ,Ct�. A

possible additional term proportional to [P̂ , �x̂ , �̂t�] in the
right-hand side of Eq. �41� is redundant because of the iden-

tity [x̂ , �P̂ , �̂t�]= [P̂ , �x̂ , �̂t�]. Had we assumed one force Ft

only, the coefficients Bt and Ct would be zero. Equation �41�
is structurally analogous to that obtained by Hu, Paz, and
Zhang �78�, although their TD coefficients were derived as-
suming a reservoir made of HO’s, while ours are purely phe-
nomenological. Below we show that the associated Wigner
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functions coincide, and as such Eq. �41� contains the non-
Markovian effects �in the sense of Refs. �76,78,81,82�, i.e.,
time-dependent diffusion and drift coefficients�. In our deri-
vation, limits as high or low temperature, strong or weak
coupling have no room for discussion since all the effects of
the environment on the system depend on the adopted values
for the four TD parameters. In particular, for coefficients A,
B, and C being time-independent one retrieves the Markov-
ian limit.

Equation �41� cannot be immediately identified with Eq.
�6�, due to different meanings of the variables p̂ �physical

momentum� in Eq. �6� and P̂ �canonical momentum� in Eq.
�41�, besides the presence of the factors exp��t� and
exp�2�t�. However, it is easy to show that these equations
are physically equivalent, because they give the same Wigner
function for the mapped physical coordinates.

The equations of motion of first and second moments for
the canonical variables are �the average values are defined as

	Â
�Tr�Â�̂t��

d	x̂
/dt = e−�t	P̂
/m, d	P̂
/dt = 	− �V/�x
e�t,

d	x̂2
/dt = e−�t	�x̂, P̂�
/m + 2Bt,

d	P̂2
/dt = − 	�P̂,�V̂/�x�
e�t + 2Ate
2�t,

d

dt
	�x̂, P̂�
 =

2

m
	P̂2
e−�t − 2� x̂

�V̂

�x
�e�t + 4Cte

�t,

and one notices that these equations contain the TD exponen-
tial factors exp�±�t�. However, passing to the physical mo-
mentum �23�, we get rid of these factors,

d	x̂
/dt = 	p̂
/m , �42�

d	p̂
/dt = − 	�V̂/�x̂
 − �̇t	p̂
 , �43�

d	x̂2
/dt = m−1	�x̂, p̂�
 + 2Bt, �44�

d	p̂2
/dt = − 	�p̂,�V̂/�x̂�
 − 2�̇t	p̂2
 + 2At, �45�

d

dt
	�x̂, p̂�
 =

2

m
	p̂2
 − 2�x

�V̂

�x̂
� − �̇t	�x̂, p̂�
 + 4Ct. �46�

Comparing Eqs. �12� and �13� with Eqs. �42� and �43�, we

see that they coincide if V̂�x�=m�0
2x̂2 /2, �t=2�t, and �=�.

Then comparing equations for the covariances of the physi-
cal momentum and coordinate, one can verify that they sat-
isfy the matrix equation �14� if the diffusion coefficients are
identified as

At = Dx�t�, Bt = Dp�t�, Ct = Dz�t� . �47�

In what follows we will show the equivalence between
the Wigner function WP�Q , t� in the canonical phase space,
Q= �x , P� with the Wigner function in the physical variables
phase space W�q , t�. The WP�Q , t� is governed by the
Fokker-Planck equation �11� with time-dependent drift and
diffusion matrices,

AP = � 0 e−�t/m

− m�0
2e�t 0

�, DP = � Bt Cte
�t

Cte
�t Ate

2�t � .

The solution of Eq. �11� for the function W�Q , t� can be
written as

WP�Q,t� =
 GP�Q,Q�,t�WP�Q�,0�dQ�,

where the propagator is given by the formula �40,52�

GP�Q,Q�,t� = �2	�det N�t��−1 � exp�−
1

2
�Q

− RP�t�Q��N−1�t��Q − RP�t�Q��� . �48�

Matrix N�t� satisfies Eq. �14� �with matrices AP and DP� and
the initial condition N�0�=0, whereas matrix RP�t� satisfies
the equation dRP /dt=AP�t�RP and the initial condition
RP�0�=1 �unity matrix�.

Differential equations for three different matrix elements
of the symmetrical matrix N�t� have the form

dN11/dt = 2e−�tN12/m + 2Bt,

dN12/dt = e−�tN22/m − m�0
2e�tN11 + 2Cte

�t,

dN22/dt = − 2m�0
2e�tN12 + 2Ate

2�t.

Doing the substitution �47� and the changes

N22 = e2�tM22, N12 = e�tM12, N11 = M11

we obtain the equations for elements of matrix M�t� with
time-independent drift and diffusion matrices, given by Eqs.
�12� and �14� with �=�. Then one can verify that the propa-
gators in the canonical and physical phase spaces are related
by a simple formula

GP�Q,Q�,t� = e−�tG�q,q�,t� . �49�

Therefore as the initial Wigner function is the same in both
coordinate systems, WP�Q ,0�=W�q ,0�, the Wigner function
at any time becomes

WP�Q,t� =
 GP�Q;Q�,t�WP�Q�,0�dQ�

=
 e−�tG�x,p;x�,p�,t�W�x�,p�;0�e�tdx�dp�

=
 G�x,p;x�,p�,t�W�x�,p�;0�dx�dp� = W�q,t� .

�50�
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Thus the master equation �41� is completely equivalent to the
translationally invariant ��=�� form of the master equation
for quantum Brownian motion �2� with operators �5� and �6�.

IV. SUMMARY AND CONCLUSIONS

We have analyzed the phenomenological approach to
build a master equation for describing the irreversible and
dissipative dynamical evolution of the state of a quantum
system S, under the influence of an unspecified environment.
In contradistinction to the microscopic approach that models
the environment as a reservoir R made of an infinite number
of degrees of freedom �for example, harmonic oscillators�,
the phenomenological approach makes use of dissipative
functions and stochastic forces. We showed that the Newton
equation of motion for S does not change by introducing two
such forces instead of only one, however, when we do the
quantization of the system, both forces become quite impor-
tant, contributing on equal footing. We derived from first
principles, with a Lagrangian containing one dissipative
function and two stochastic forces, the master equation de-
scribing the quantum Brownian motion �of a harmonic oscil-
lator� with translationally invariant damping and the most
general bilinear �with respect to the coordinate and momen-
tum operators� relaxation superoperator, which can be re-
duced to an equivalent differential equation of the Fokker-
Planck type. However, the TD phenomenological parameters
entering the forces cannot be determined within the frame-
work of the phenomenological approach; they should be
fixed either from experimental data that reproduce relevant
physical properties of S or from some other considerations,
such as the requirement of satisfying the positivity constraint
�18� or by fitting properties at thermal equilibrium. In this
direction we verified that the master equations derived in
�76–78�, containing non-Markovian effects �present in their
TD coefficients� are accounted in our derivation where the
environment is simulated by two effective forces and the
dissipative function, instead of assuming an interaction with
an infinite set of HO’s.

We would like to emphasize that by averaging over the
stochastic forces, we did not disregard any term �see the
Appendix for details�. In this sense, the phenomenological
derivation of the master equation is as exact as other ap-
proaches �78�. Of course, this happened due to the choice of
correlation functions in the form of delta functions, albeit
multiplied by time-dependent strength factors. The pertinent
question, what could happen in the most general non-
Markovian case, when correlation functions, such as A�t1 , t2�,
are arbitrary functions of the time difference t1− t2 �colored
noise�, requires a separate study. Certainly, the phenomeno-
logical approach used in this paper has limitations, because it
is based on some effective Lagrangian. Therefore although it
works well for one-dimensional systems �or isotropical mul-
tidimensional ones�, it will fail for generic multidimensional
systems with several independent damping coefficients, be-
cause no effective Lagrangian can be found for such systems
�85,86�. This explains also why only a subfamily of master
equations �6�, restricted by the condition �=� �translation-
ally invariant damping�, can be obtained within the frame-

work of the scheme used in this paper: there are no effective
Lagrangians for ��� �i.e., for two “friction forces” in the
classical equations of motion �7� and �8��.
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APPENDIX: DERIVATION OF THE
PHENOMENOLOGICAL MASTER EQUATION

Iterating Eq. �32� once more we get the formal solution

�̃t = �̂0 +
1

i�



0

t

dt1�W̃�t1�, �̂0�

+ � 1

i�
�2


0

t

dt1

0

t1

dt2†W̃�t1�,�W̃�t2�, �̂t2
�‡ , �A1�

and deriving it with respect to time we get Eq. �33�. Using
the right-hand side of Eq. �A1� for �̃t�, inserting it in the

right-hand side of Eq. �33�, and keeping even terms in W̃
�because only the even terms will survive after averaging
over the ensemble�, Eq. �33� may be written as an infinite
series,

d�̃t

dt
=

1

�i��2

0

t

dt��W̃�t�,�W̃�t��, �̂0 +
1

�i��2

� 

0

t�
dt1


0

t1

dt1�†W̃�t1�,�W̃�t1��, �̂0�‡ + ¯ ��
or

d�̃t

dt
=

1

�i��2

0

t

dt�†W̃�t�,�W̃�t��, �̂0�‡

+
1

�i��2

0

t

dt��W̃�t�,�W̃�t��,�
k=1

�
1

�i��2k

� 

0

t�
dt1


0

t1

dt1� . . . 

0

tk−1�
dtk


0

tk

dtk�

� †W̃�t1�,�W̃�t1��, . . . †W̃�tk�,�W̃�tk��, �̂0�‡�‡�� ,

�A2�

with t0�� t�. Averaging the quadratic term in W̃�·� of Eq.
�A2�, we get the four terms of Eq. �40�. Averaging the quartic

terms in W̃�·�,

1

�i��4

0

t

dt�

0

t�
dt1


0

t1

dt1�

� †W̃�t�,�W̃�t��,†W̃�t1�,�W̃�t1��, �̂0�‡�‡ ,

we obtain 16 terms, which together with the four terms of
Eq. �40� give the expression
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1

�i��2 �Ate
2�t
†x̃�t�,�x̃�t�, �̃t��‡ + Ctte

�t�†x̃�t�,�P̃�t�, �̃t��‡

+ �P̃�t�,�x̃�t�, �̃t���� + Bt†P̃�t�,�P̃�t�, �̃t��‡� ,

where

�̃t� = �̂0 +
1

�i��2

0

t�
dt��At�e

2�t�
†x̃t�,�x̃t�, �̂0�‡

+ Ct�e
�t��†x̃t�,�P̃t�, �̂0�‡ + †P̃t�,�x̃t�, �̂0�‡�

+ Bt�†P̃t�,�P̃t�, �̂0�‡� + ¯ . �A3�

Finally, after averaging and collecting all terms in Eq. �A2�
one obtains the master equation in the interaction picture,

d�̃t

dt
=

1

�i��2 �Ate
2�t
†x̃t,�x̃t, �̃t�‡ + Bt†P̃t,�P̃t, �̃t�‡

+ Cte
�t�†x̃t,�P̃t, �̃t�‡ + †P̃t,�x̃t, �̃t�‡�� , �A4�

which is exact. Note that on the right-hand side of Eq. �A3�
the density operator is time-independent whereas it is TD in
Eq. �A4�.

To illustrate the calculations, let us consider an example
of quartic terms of the form

1

�i��4

0

t

dt�

0

t�
dt�


0

t�
dt� exp��t + �t� + �t� + �t��

� FtFt�Ft�Ft�†x̃t,�x̃t�,†x̃t�,�x̃t�, �̂0�‡�‡ .

They give the following terms in the master equation:

d�̃t

dt
=

2

�i��2

0

t

dt2e�t+�t2At��t − t2�†x̃t,�x̃t2
, �̂0�‡

+
22

�i��4

0

t

dt2

0

t2

dt3

0

t3

dt4e�t+�t2
+�t3

+�t4

� †x̃t,�x̃t2
,†x̃t3

,�x̃t4
, �̂0�‡�‡ � �At��t − t2�At3

��t3 − t4�

+ At��t − t3�At2
��t2 − t4� + At2

��t2 − t3�At��t − t4��

+ ¯ .

Due to the time ordering t� t2� t3� t4, only the products of
delta functions ��t− t2���t3− t4� contribute to the integral, and
in general,

Ft1
Ft2

¯ Ft2n
� 2n�

i=1

n

At2i−1
��t2i−1 − t2i� . �A5�

Thus the terms proportional to the coefficient At can be com-
bined as follows:

d�̃t

dt
=

At

�i��2e2�t
†x̃t,�x̃t, �̂0�‡ +

22At

�i��4�1

2
�2

e2�t

� 

0

t

dt3At3
e2�t3†x̃t,�x̃t,†x̃t3

,�x̃t3
, �̂0�‡�‡ + ¯

=
At

�i��2e2�t
†x̃t,�x̃t, �̃t�‡ , �A6�

if one notices that

�̃t = �̂0 +
1

�i��2

0

t

dt3At3
e2�t3†x̃t3

,�x̃t3
, �̂0�‡ + ¯ .

The factor 1 /2 in the first line of Eq. �A6� occurs due to the
integration of the Dirac delta function over a semi-infinite
interval. We emphasize that Eq. �A6� is exact under the as-
sumption �35�, because no terms were disregarded.

Returning to the original operator �̂t with the aid of the
transformation �29�, we arrive at Eq. �41�.
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